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Introduction
The Earth’s climate system is highly variable due to complex non-linear physical processes at

various spatial and temporal scales. As a result, while it is well-established that increasing green-
house gas concentrations will lead to warming surface temperatures and increased atmospheric
moisture [1, 2], it is difficult to quantify the extent to which observed climate changes can be
attributed to human influence. This issue is addressed in the climate science literature through
detection and attribution (D&A) research, where a combination of Global Climate Model (GCM)
output and statistical techniques are used to separate the anthropogenic signal from natural vari-
ability in the observational record. Detection and attribution techniques have been very successful
in establishing that carbon emissions are to a large degree responsible for observed increases in
global air surface temperatures. However, given the large spatial variability in global warming im-
pacts, policymakers and the public at large are primarily concerned with the role global warming
plays at a local level. There is a particular need to know the extent to which human emissions
are contributing to climate extremes, which have a disproportionate impact on infrastructure, the
environment, and public health [3, 4, 5, 6]. Detection and attribution of extreme events at the local
level is significantly more challenging than doing so for global mean temperatures due to higher
levels of natural variability. This challenge presents a pressing need for statistical methodology
that can provide robust and reliable detection and attribution conclusions at small scales.

This proposal will develop a Bayesian hierarchical framework for assessing the degree to which
local climate changes, and in particular changes in extreme events, can be attributed to anthro-
pogenic greenhouse gases. The methodology that I develop will advance the state-of-the-art of
spatio-temporal modeling in order to detect significant causal relationships while controlling for
false discoveries. This research will involve the use of cutting-edge computational techniques and
resources, as well as recent advancements in the quantity and quality of climate model output, in
order to provide robust and reliable conclusions. I will be advised in this project by Dr. Mark
Risser of Lawrence Berkeley National Lab, a recognized expert in Bayesian methodology and spatio-
temporal statistics who has solved many applied problems in climate change detection and attri-
bution. Throughout the fellowship, I will also collaborate with statisticians at UC Berkeley and
climate, atmospheric, and computational scientists at Lawrence Berkeley National Lab. My pro-
posed research will provide for the first time an integrated methodology for making local detection
and attribution statements from the perspective of a global framework. This work will provide ad-
vancements in our understanding of the role that human actions have on increasingly devastating
climate impacts, a topic whose importance will continue to grow in the years to come.

Past Accomplishments
My experience in developing statistical models for complex spatio-temporal climate phenomena

and in developing detection and attribution methodology provides me with an ideal background for
succeeding in the proposed research. The first portion of my Ph.D. research has focused on building
statistical methodology for estimating changes in ocean heat content from dispersed observations.
Previous approaches to this problem have focused on statistical models which are only valid locally,
and while such approaches can be used to interpolate the heat content field they cannot produce
valid uncertainty estimates for the global integral and its trend over time. In my work, I devel-
oped a hierarchical model using kernel convolutions to capture the spatially non-stationary and
anisotropic covariance properties of the heat content field in order to create a model which can
quantify uncertainty in global ocean heat content [7]. As a part of this project, I have developed
the BayesianOHC R software package that allows statisticians and climate scientists to easily
implement sophisticated Bayesian models for the ocean heat content field [8]. Within the topic
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of non-stationary spatial modeling, I have also published peer-reviewed research on computational
techniques for fitting Gaussian process models to large spatial datasets [9].

The second portion of my Ph.D. research has focused on developing an improved hierarchical
Bayesian framework for the detection and attribution of the global temperature signal. In partic-
ular, I introduce a flexible structure for estimating the climate system’s natural variability that
allows for the uncertainty induced from estimating the covariance matrix to be propagated to the
final result. My approach is able to achieve more accurate coverage rates for detecting the true
signal than approaches that do not take this source of uncertainty into account [10]. While my
experience with spatio-temporal modeling and detection and attribution will benefit me directly in
performing this proposed research, I also have published research in developing Bayesian hierarchi-
cal models for psychometric applications [11] and developing algorithms for network optimization
[12].

Research Objective, Methods, and Significance
In the climate science literature, the detection and attribution problem is commonly formalized

as a least-squares regression [13, 14, 15]. In its simplest form this can be written as y = βx + ε,
where y represents the global field of observed trends, x represents the field of trends that can be
attributed to anthropogenic emissions, and the residuals ε ∼ N(0, C) represent internal variability
with covariance matrix C. Then it can be said that the global warming signal is “detected” in the
observations if β > 0, and that the observed trend can be “attributed” to the anthropogenic signal
if β is statistically indistinguishable from one. There are statistical challenges in performing this
regression in that the observations (the y term), the anthropogenic signal (the x term), and the
structure of internal variability (the matrix C) are not exactly known and carry uncertainty in their
estimation. Various regression-based detection and attribution approaches have been proposed in
the climate literature [16, 17, 18, 19, 20], and in the statistics community recent developments have
led to Bayesian hierarchical models that can account for various sources of uncertainty in the final
inference [10, 21]. These approaches are limited however in that they only account for making
detection and attribution conclusions at large spatial scales.

In this proposal, I will develop a regression-based detection and attribution framework that can
make valid statistical conclusions at local scales. This will be done by introducing a stochastic
process model for the detection and attribution parameter β, developing improved estimation of
the natural variability matrix C, and integrating Bayesian false discovery control techniques into
the framework so that the detection and attribution tests can be performed on every grid-cell
simultaneously. This framework will be applied to observed changes in mean temperatures as
well as to changes in extreme temperatures quantified through quantile regression. The proposed
research will provide for the first time an integrated methodology for making local detection and
attribution statements from the perspective of a global framework. The work will be structured
through the following three aims, which I elaborate on below:

� Aim 1: Development of the Local Detection and Attribution Framework
� Aim 2: Application to Mean and Extreme Temperatures
� Aim 3: Statistical Validation using Climate Model Ensembles

Aim 1: Development of the Local Detection and Attribution Framework
Previous work in the climate literature has extended the regression-based detection and attribu-

tion framework to local scales by applying the tests to each location independently [22, 23]. Letting
i index over grid-cells, this can be written as yi = βixi + εi, where εi ∼ N(0, σi) represents natural
variability at each location. In vector notation, this procedure can be written as y = β � x + ε
where � signifies pointwise multiplication. While often not used in practice, the application of this
methodology to multiple locations independently requires multiple testing correction procedures in
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Figure 1: Power of the detection hypothesis test applied independently to each grid-cell without
multiple testing correction (a) and using the Benjamini-Yekutieli procedure (b). Power is computed
at the 5% level by averaging over the 47-member GISS initial-condition ensemble [31].

order to control for spurious conclusions. These procedures, such as the Benjamini-Yekutieli cor-
rection for tests with arbitrary dependence assumptions, can control for the rate of false discoveries
[24]. This comes at the cost of decreasing the test’s ability to correctly identify true relationships,
which in statistics is referred to as the power of the test.

While the power of the detection and attribution framework can be evaluated from a purely
statistical perspective, it is more realistic to use climate model output to evaluate the statistical
properties under the assumption that the “truth” is known. While climate model output has long
been used in the detection and attribution literature, output was historically taken from simulations
run under different physical configurations. Recently there have been increases in the availability
and size of initial-condition ensembles, which are collections of output from a fixed climate model
configuration run under various perturbations of the initial conditions [25, 26, 27]. These initial-
condition ensembles imply a statistical distribution over the climate system under the assumption
that the physical dynamics are known, which has paved the way for significantly more precise
statistical analysis [28, 29, 30].

Using initial condition ensembles, the statistical power of the independent grid-cell detection
methodology of [23] can be evaluated against the alternative hypothesis that βi = 1 everywhere,
which within the context of the historical simulation is known to be true. Figure 1 shows the power
values calculated using the ensemble of [31] without multiple-testing correction (Figure 1a) and
with the Benjamini-Yekutieli false discovery correction (Figure 1b). As can be seen, the multiple
hypothesis testing correction procedure yields a substantial decrease in the power of the detection
procedure. While this reduction in power is necessary to control for false discoveries, the power in
Figure 1(b) is unrealistically low due to the fact that the substantial spatial correlation between
the tests is not taken into account [32].

To address this issue I will model both the internal variability components εi and the detection
and attribution parameters βi as spatially-correlated processes. As is standard in the literature,
internal variability will be modeled as ε ∼ N(0, C) where C is largely informed by climate model
simulations run under pre-industrial conditions. In order to capture the uncertainty induced from
estimating C in the final inference, its estimation will be based on the hierarchical Laplacian
parameterization developed in my prior work on detection and attribution of the global signal [10].
This representation will be extended to capture variability at smaller scales, as these components
are designed to be filtered out in the framework for the global signal.

The modeling of β as a spatial field rather than as a singular parameter will be a novel de-
velopment, and as this parameter should be inferred from the data its estimation will not involve
climate model output directly. Rather, it will be assumed to follow a parameterized stochastic
process whose parameters can be estimated within the context of the inference framework. Gaus-
sian processes are widely used to model spatial correlation and would be a natural choice. This
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parameter is likely to have a correlation structure that varies over the domain, as suggested by
Figure 1. As such β will be modeled using a non-stationary kernel-convolution Gaussian process
using computationally efficient implementations [7, 33].

The overall Bayesian hierarchical framework is summarized in Figure 2. In developing this
framework, the specific parameterization of C and the non-stationary Gaussian process parameters
denoted as θ will be designed using climate ensembles as a developmental testbed. The integrated
framework will allow for the incorporation of Bayesian false discovery methods to control for spuri-
ous conclusions [32, 34, 35, 36]. The power and false discovery rate of the resulting framework will
be evaluated using initial condition ensembles from multiple climate model configurations in order
to ensure that the conclusions are robust to the physical assumptions.

Pre-Industrial

Runs (zj)

zj ∼ N(0, C)

Historical

Runs (xk)

xk ∼ N(x, C)
Observations

(y)

y = β � x+ ε

ε ∼ N(0, C)
β ∼ GP (·, ·;θ)

Figure 2: Diagram of the Bayesian hierarchi-
cal framework. Data is in red and distributional
assumptions are in green. Indices j index over
pre-industrial runs zj and k index over historical
runs xk. Here the symbol � refers to pointwise
vector multiplication. The vector θ represents
the non-stationary parameters of the Gaussian
process (GP ) for β.

Aim 2: Application to Mean and Extreme
Temperatures

Once the framework described in Aim 1 is de-
veloped, I will apply the procedure to observational
data in order to produce maps of detection and at-
tribution results at the grid-cell level. The first ap-
plication will be to mean near-surface air temper-
atures, for which I will use the HadCRUT obser-
vational ensemble which takes into account obser-
vational uncertainty [37]. While understanding the
relationship between anthropogenic influences and
mean temperature changes is important, extremes
are of greater general interest due to their dispropor-
tionate effect on public health and the environment.
I will incorporate extreme temperatures into the de-
tection and attribution framework through quantile
regression, which is a statistical method for quan-
tifying trends in the intensity of extremes [38, 39].
The statistical power of extreme detection and at-
tribution will likely differ spatially from the results applied to mean temperatures, due to evidence
that in some locations and seasons these aspects of the temperature distribution are changing at
different rates [28, 40, 41]. In order to lend insight to this phenomenon, I will compare the results
of my framework applied to mean and extreme temperatures in different seasons and evaluate the
extent to which observed differences in power agree or disagree with physical intuition and the
existing literature.

Aim 3: Statistical Validation using Climate Model Ensembles
Recent increases in climate model ensembles have been complemented by inter-comparison

projects, which provide collections of ensembles for various scientific purposes [42, 43]. In particular,
the Detection and Attribution Model Intercomparison Project (DAMIP) was created for the explicit
purpose of evaluating detection and attribution methodology [44]. The historical and pre-industrial
scenarios in this collection will be used in the development of the Bayesian framework as described
in Figure 2. DAMIP also includes simulations of the historical climate under isolated influences,
for example solar radiation or aerosols alone, as well as simulations under shared socio-economic
pathways (SSP), which simulate the future climate under various hypothetical emissions scenarios.
I will use these simulations for two additional applications. The first will be to split the influence of
the signal x into components representing both greenhouse gas and non-greenhouse gas influences to
investigate how well the detection and attribution framework can distinguish between these signals
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at the local level. The second will be to evaluate the power of the statistical tests under various
future warming scenarios. This will allow quantification of the point at which various climate
changes will become detectable or attributable as the global warming signal continues to increase
in the coming decades.

Career Development
Following the fellowship, I plan to join the faculty at a research university where I will continue

to develop statistical methodology for improving our understanding of climate and environmental
problems. Through my fellowship appointments at Lawrence Berkeley National Laboratory and the
UC Berkeley Department of Statistics, I will establish collaborations with statisticians and climate
scientists that I will continue to build throughout my career. I will also develop my scientific writing
and communication skills through the publication of my research and through presentations to the
statistics and climate science communities.

Choice of Sponsor and Host Institution
Dr. Risser is a recognized expert in spatial, environmental, and Bayesian statistics and has

solved many applied problems in climate change detection and attribution. From Dr. Risser, I will
deepen my understanding of statistics, climate science, and computational techniques. The research
environment at Lawrence Berkeley National Lab will be ideal for conducting my postdoctoral work
due to its access to powerful computing resources and collaborative arrangements with eminent
climate scientists. I will also be a visiting scholar at the UC Berkeley Department of Statistics
where I will build connections in the statistics community, including with Dr. Christopher Paciorek
who is a prominent leader in spatio-temporal modeling and statistical computation.

Broader Impacts
This research will be carried out in a way that maximizes its impacts with regard to the statistics

and climate communities as well as to the broader public. I plan to present my work at both the
annual Joint Statistical Meetings (JSM) and the American Geophysical Union (AGU) fall meeting,
which are the main academic conferences for statisticians and climate scientists respectively. I will
also develop an R package that will provide accessible functionality for implementing the detection
and attribution framework. This package will be made available on the public repository CRAN
[45], and I will make all of the code for reproducing my results publicly available through Github.

To make my work more accessible to the general public I will create an online tool through
which one can visualize the results of my research. This tool will allow users to select a particular
season and quantile level and view the resulting detection and attribution maps. Users will also
be able to select a particular location and see the extent to which anthropogenic emissions are
responsible for observed changes to their local climate. There will additionally be an option to
display the results applied to future simulations under various emission scenarios. This website
will be freely accessible via a public web domain, and I will promote the use of this tool through
presentations, social media, and news coverage.

The detection and attribution of climate impacts is a high-profile topic that is relevant to
climate scientists and statisticians as well as to policymakers and the public at large. Most prior
detection and attribution studies have focused on either the global signal, which has little relevance
to particular communities, or to individual newsworthy events, which while informative is less
reliable due to selection bias and multiple testing issues. My proposed research will provide for the
first time an integrated methodology for making local detection and attribution statements from the
perspective of a global framework. As the global warming signal continues to grow in the coming
years, it will be increasingly important to have a well-understood methodology for establishing the
causal link between anthropogenic greenhouse gas emissions and damaging impacts.
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