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Abstract

The Argo program has allowed for an unprecedented view of how global ocean heat content

is changing, however, the complex properties of the ocean heat content field have made accurate

quantification of the multi-year trend statistically challenging. Previous work has proposed a

hierarchical Bayesian method for quantifying ocean heat content at a fixed time by modeling

the spatial non-stationarity and anisotropic of the field. While this approach can infer the trend

in ocean heat content over months, a more accurate picture requires a joint spatio-temporal

model which takes into account both seasonality in the mean field and temporal correlation

in the anomalies. In this paper, we propose a hierarchical Bayesian spatio-temporal model for

ocean heat content that addresses these properties through a spatially-varying temporal range

parameter field and a spatio-temporal Gaussian process to represent a seasonal structure that

varies smoothly over space. This approach applied to ocean heat content observations from

2007 to 2021 is able to identify the ocean heat content trend with higher posterior confidence

than would be expected just from the increase in the amount of data alone in the spatial-only

approach. Due to the key role played by ocean heat content in regulating the atmospheric

response to increasing greenhouse gas concentrations, these results have important implications

for the estimation of transient climate sensitivity.

1 Introduction

Previous work [Baugh and McKinnon, 2022] introduced a hierarchical Bayesian Gaussian process

framework for modeling the spatially non-stationary correlation structure of the ocean heat con-
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tent field. This model was fit to a subset of the data such that seasonal variation in the mean-field

and temporal correlations in the anomalies could be ignored, producing a posterior distribution for

the year-to-year trend that takes into account sampling uncertainty, uncertainty from variability

in the process, and uncertainty from parameter estimation. This paper extends the spatial-only

model to the spatio-temporal setting in order to take advantage of the information presented by

spatial correlation in the data as well as the additional data from incorporating all months. The

treatment begins with updating the notation for representing the data in the spatio-temporal set-

ting in Section 2. Section 3 introduces two improvements to the spatial-only model to account for

temporal properties in the mean and anomaly fields. The first development in Section 3.2 is of a

mean-field that models smooth seasonal variation simultaneously with spatial variation through a

spatio-temporal Gaussian process prior with a “circular” correlation structure over time. Section

3.1 introduces a temporal dimension to the kernel-convolution process with spatially-varying tem-

poral correlation length scale parameters analogous to the latitudinal and longitudinal convolutions

presented in [Baugh and McKinnon, 2022].

This paper proceeds to apply the spatio-temporal framework to Argo data from all months over the

years 2007-2021. Parameter fields for initializing the MCMC sampler are derived using an updated

moving window approach in Section 4. In Section 5 the spatial Vecchia process used in Baugh

and McKinnon [2022] as a computationally efficient approximation for the full Gaussian process is

augmented to account for the spatio-temporal structure of the data. This requires a re-evaluation

of the size of the conditioning sets needed to obtain a sufficiently accurate representation, which

is done through a study evaluating the accuracy of the posterior distributions of the mean and

trend fields for different conditioning set sizes. Finally, results from the posterior distribution

are presented and discussed in Section 6, including the posterior correlation parameter fields, the

spatially and seasonally varying mean-field, distributions for the ocean heat content values at each

month, and the spatially-varying trend field. The resulting estimates for the trend in ocean heat

content are consistent with the results in Baugh and McKinnon [2022] but with a much higher level

of confidence due to the increase in data and the information provided by the temporal structure.
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2 Spatio-Temporal Data

To extend the framework to data from all months, the notation must be adjusted to represent each

location as a spatio-temporal point and to re-define heat content as a field varying continuously

over time. Let x = (xlat, xlon, xtime) ∈ CL×R, where as before CL ≡ R×S represents latitude and

longitude in Euclidean and spherical coordinates respectively, and xtime represents time in days.

Furthermore, let z ∈ R+ denote depth from the surface in meters. Define the three-dimensional

temperature field at spatio-temporal location x and depth z as T (x, z) as measured in degrees

Celsius. Similarly to Baugh and McKinnon [2022], the spatio-temporal field is defined as heat

content values integrated over depth as calculated using following formula:

H(x) =

∫ 2000m

0m
ρcρT (x, z) dz. (1)

Here, ρ is seawater density in kg/m3 and cρ is the specific heat of seawater in J/(kg◦ C) [Dijkstra,

2008]. The units of H(x) are J/m2. The total global ocean heat content or OHC is a spatially-

integrated quantity that varies continuously over time:

OHC(t) =

∫
[xlat,xlon]∈Smask

H([xlat, xlon, t]) dx (2)

where Smask is the ocean’s surface masked following Roemmich and Gilson [2009]. Again, floats with

maximum depths that are not within 100m of 2000m are excluded to avoid having to interpolate

the heat content field over depth.

The data under consideration here range from January 2007 to November 2021, and after applying

the mask and depth filters there are 1,111,023 total ocean heat content observations. These obser-

vations are not uniformly distributed over space, with some regions frequently seeing more floats

than others, nor over time, with an increase in the number of floats deployed over time resulting

in more recent years having more observations than earlier years. To examine the spatial distri-

bution of observations and how data coverage has increased over recent years, the spatio-temporal

domain was partitioned into 3◦ × 3◦ grid-cells for each month within the time range. For each

grid-cell-month pair, an indicator function was applied for whether or not it contained at least

one observation; this is defined as the 3◦ × 3◦ resolution “data coverage”. To visualize the spatial
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(a) The percentage of months containing at least one observation within each 3◦ × 3◦ grid-cell. Left panel is
averaged over the years between 2007 and 2014, and the right panel is averaged over the years 2015 to 2021.

(b) The average number of 3◦ × 3◦ grid-cells with at least one observation displayed over months.

Figure 1: Spatial distribution of data coverage at the 3◦ × 3◦ grid-cell resolution over 2007 to 2014
and 2015 to 2021 (a), and the increase in data coverage over time (b).

4



3 MODEL FRAMEWORK

distribution of the data coverage, the data was partitioned between subsets occurring between 2007

and 2014 and observations occurring between 2015 to 2021. For each of these subsets, the data

coverage averaged over all months was calculated for each grid-cell. The resulting spatial distribu-

tions of data coverage are displayed in Figure 1a, with data coverage from 2014 and earlier on the

left panel and 2015 and later on the right. It can be seen that in each of the time periods, data

coverage is higher in certain areas than others, with the Pacific Ocean east of Japan and the North

Atlantic exhibiting high data coverage over each time period. While these regions have over 80%

data coverage in both time periods, grid-cells with less than 20% data coverage can be observed in

most regions in the earlier time period. In the later time period, grid-cells with less than 20% data

coverage occur rarely and most regions have greater than 60% data coverage. A notable exception

is the far Southern Ocean, which exhibits low levels of data coverage even in the more recent time

frame.

To get a further sense of the increase in data coverage over time, coverage was averaged spatially

for each month in the full time period with results displayed in Figure 1b. It can be seen that

data coverage increases continuously until about 2018, when it begins to stabilize at values nearing

70%. Coverage ranges from 30% in the first month of January 2007 to 65.67% to the last month

of November 2021. In the dataset under consideration here, the number of unique floats with valid

ocean heat content profiles ranges from 1,061 in January 2007 to 3,164 in November 2021.

3 Model Framework

In this section, the hierarchical Bayesian framework of Baugh and McKinnon [2022] is extended

to model the spatio-temporal evolution of the Argo data. Let Hobs(x) denote the observed spatio-

temporal field of heat content values. This differs from the “true” unknown heat content field H(x)

since the former may include measurement error or small-scale variation. Specifically, let

Hobs(x)
i.i.d.∼ N(H(x), σ2(x))

where σ2(x) is the nugget variance. Under this general formulation, σ2(x) can be taken to be

varying in both space and time, however the forthcoming construction will restrict this and the
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other correlation parameters to vary only over space.

3.1 Temporal Correlation Model

Let θlat(x), θlon(x), and θtime(x) represent spatially-varying latitudinal, longitudinal, and temporal

range parameters respectively; these fields will be collectively referred to as θ = (θlat, θlon, θtime).

At a fixed spatio-temporal location x, the kernel distance between spatio-temporal points x and u

is defined as

dst(x,u;θ) =

√
deuc(xlat, ulat)2

θlat(x)
+

dgc(xlon, ulon)2

θlon(x)
+

deuc(xtime, utime)2

θtime(x)
.

Putting this distance function into the kernel convolution construction of Paciorek and Schervish

[2006] yields the following covariance function between spatio-temporal points x and y:

kst(x,y;θ, ϕ) =
√
ϕ(x)ϕ(y)

∫
u∈CL×R

exp
(
−dst(x,u;θ)

2 − dst(y,u;θ)
)2

du

where ϕ is the spatially-varying variance field. Since the squared distance terms dst can be de-

composed as the additive sum of distance terms in the three dimensions, the convolutions can be

computed in each dimension separately. Specifically, convolutions in the latitudinal and temporal

dimensions can be computed exactly using the formulas of Paciorek and Schervish [2006], and the

convolutions in the longitudinal dimension can be computed using the Gaussian approximation

method described in Baugh and McKinnon [2022].

The underlying heat content field H(x) is modeled as a Gaussian process constructed from the

kernel k:

H(x) ∼ GP (µ(x), kst(x,y;θ, ϕ)) (3)

where µ will be defined in Section 3.2. Let ρ = {θlat, θlon, θtime, ϕ, σ} denote the set of parameter

fields excluding the mean-field. For each ρ ∈ ρ, let

log(ρ(x)) ∼ GP (µρ, ϕρ exp(−dcyl(x,y)/θρ)) (4)

where µρ, ϕρ, and θρ are hyper-parameters which differ for each field. Note that dcyl, defined in
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Baugh and McKinnon [2022], is used as opposed to dst; since this distance metric only takes into

account the spatial components of x and y, Equation (4) constrains the parameter fields ρ to be

constant over time. These parameter fields are taken to vary only spatially primarily to avoid

adding additional complexity to the model, particularly given the computational burden of the

MCMC procedure with the large number of observations present here. There may be reasons to

think that some of the parameters would vary seasonally, and if inference on spatio-temporally

varying correlation parameters could be done in an efficient way this could be a potential extension

for future work. However it is likely that such an extension would only have a minor effect on

inference of the trend field.

3.2 Seasonally-Varying Mean-field

Unlike the correlation parameters, there is a stronger reason to think that the mean-field would

vary seasonally, and given the stronger relationship between the mean-field and the trend field it

is important for a spatio-temporal model of ocean heat content to take seasonality into account.

Furthermore, the patterns of seasonality would not be expected to be constant over the domain;

in particular one would expect heat content to peak in the late Northern Hemisphere summer or

fall in the higher latitudes and peak in the late Northern Hemisphere winter or early spring in the

Southern Hemisphere. To this aim, the spatially-varying mean-field of Baugh and McKinnon [2022]

is extended to a field varying over both space and time, employing a “circular” correlation model

over the temporal dimension in order to produce a field that is smooth at calendar-year endpoints.

To represent the temporal dimension, let doy(xtime) ∈ [0, 366] denote the “day-of-year” for a par-

ticular time point xtime. Let ddoy(xtime, ytime) = min(|doy(xtime)− doy(ytime)|, |365− doy(xtime) +

doy(ytime)|) denote the “circular” distance over day-of-year. Then, analogously to dst, the spatio-

day-of-year distance can be defined as

ds-doy(x,y; θlat, θlon, θtime) =

√
deuc(xlat, ylat)2

θlat
+

dgc(xlon, ylon)2

θlon
+

ddoy(xtime, ytime)2

θtime
.

where unlike in the definition of dst the spatial dependence on correlation length-scale parameters

is omitted since this distance function will only be used in the context of a stationary Gaussian
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process. Specifically, define the spatio-temporal mean-field as

µst(x) ∼ GP(µµst , ϕµst exp(−ds-doy(x,y; θµ;space, θµ;space, θµ;time))

where θlat;µ ≡ θlon;µ ≡ θspace;µ produces a process that is spatially isotropic with a separate corre-

lation length-scale in the temporal dimension. While isotropic Gaussian processes are used for the

parameter fields, the underlying model for the ocean heat content field remains anisotropic. This

prior forces µst to be constant over each calendar year and to vary smoothly over the calendar-year

endpoints.

Similar to Baugh and McKinnon [2022], the center of the Gaussian process for ocean heat content

will be the sum of the year-constant mean-field and a spatially-varying trend field. Here, the

trend-field β is taken to be spatially-varying only:

β(x) ∼ GP (µβ, ϕβ exp(−dcyl(x,y)/θβ)).

With these two components, the Gaussian process mean of Equation 3 is defined as

µ(x) = µst(x) + β(x)(xtime − xorigin)

where unlike in Baugh and McKinnon [2022] the trend parameters are over units of days rather

than years. Here, xorigin is defined as January 1, 2007.

The hyper-parameters in Equation 4 and above are estimated through obtaining a “first-guess”

estimate of the parameter fields through a stationary moving-window approach analogous to the

procedure of Baugh and McKinnon [2022]; the results of this procedure are described in Section 4.

Also similarly to Baugh and McKinnon [2022] these fields will be represented and sampled through

Gaussian process basis functions. Specifically, for each ρ ∈ ρ, let bρ ∼ N(0, Inκ;space) denote basis

values on a set of spatial knot locations denoted κspace ∈ Rnκ×2. Define bβ analogously, and for the

mean-field µst, define bµst ∼ N(0, Inκst
) where κst = κspace × κtime. Here, κst is taken to consist of

253 knot points evenly spaced over the spatial mask at every 16 degrees in the longitudinal direction

and every 8 degrees in the latitudinal direction, and κtime consists of time points distributed bi-

8



4 INITIAL CONFIGURATION OF CORRELATION PARAMETER FIELDS

monthly. For each ρ ∈ ρ let the following hold for each location x:

ρ(x) = log(µρ + ϕρΣx,κst;θρΣκspace,κspace;θρbρ). (5)

For bβ and bµst , equations analogous to (5) hold by removing the logarithmic link function and

substituting κst for µst.

To evaluate the posterior of the parameter fields, Markov Chain Monte Carlo (MCMC) with

Metropolis-Hastings-within-Gibbs steps is used on bρ for each ρ ∈ ρ. The procedure is analo-

gous to that described in Baugh and McKinnon [2022], to which the reader is directed for specific

details.

4 Initial Configuration of Correlation Parameter Fields

To obtain the initial configuration for the sampler, and to estimate the hyper-priors for the Gaussian

process priors assigned to each of the parameter fields, a moving-window approach is used to

obtain estimated parameter fields to which Gaussian processes can be fit using maximum likelihood

estimation. Specifically, for each grid-point of a 4◦ × 4◦ latitude-longitude partition of the domain,

parameters of a stationary Gaussian process were estimated from data within a 20◦ × 20◦ window.

This involves estimating parameters θlat, θlon, θtime, ϕ, σ, β, and µdoy from the data for each window,

where µdoy is an alteration of µst that is spatially stationary but contains the same structure of

seasonal variation. The values of µdoy at the origin, defined as January 1, 2007, is used to obtain

the spatial hyper-parameters for µst. The temporal hyper-parameter for µst is taken to be fixed at

θµ;season ≡ 602, which corresponds to a 0.05 effective correlation of 100 days, in order to achieve

realistic smoothness in the estimated spatial pattern. This procedure yields a spatially-varying field

of stationary parameter estimates for each of the parameters. To estimate the hyper-parameters

{µρ, ϕρ, θρ}ρ∈ρ, Gaussian processes were fit to each of the respective gridded fields of log-transformed

parameter estimates. For the mean and trend fields, spatial range parameters were estimated under

the constraint θµ;space ≡ θβ in order to ensure that the two fields that compose µ have the same

spatial range. Furthermore, µβ was constrained to be zero in order to avoid biasing the value of

the overall trend. The estimated hyper-parameters obtained are displayed in Table 1.
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Effective Range q.25 q.5 q.75 Units

γlat 27.09◦ 2.82 3.61 4.61 Degrees
γlon 29.09◦ 4.82 7.74 12.44 Degrees
γtime 37.60◦ 119.48 173.17 250.97 Days
σ2/ϕ 24.39◦ 0.04 0.07 0.16 Unitless√

ϕ 40.16◦ 3.52 4.89 6.80 GJ/m2

µst 44.15◦ 34.20 45.27 56.34 GJ/m2

β 44.15◦ -0.10 0.00 0.10 (GJ/m2)/year

Table 1: Hyperparameters obtained from maximum likelihood estimation on fields of stationary
parameters estimated from a 20◦ × 20◦ moving window procedure. For each field the 5th, 50th,
and 95th quantiles of the respective prior distributions are displayed. The range hyperparameter
and the correlation length scale fields γlat, γlon, and γtime are reported in terms of effective range,
defined as the distance at which the correlation is 0.05.

The estimated hyper-parameters displayed in Table 1 were used along with standard kriging for-

mulas to obtain the basis values at the spatial knot points κspace. In order to visualize these

configurations, these basis values were then kriged again onto a 1◦ × 1◦ latitude-longitude grid on

the domain, with results displayed in Figure 2. Here it can be seen longitudinal correlations are

larger than latitudinal correlations in most areas, which is to be expected as the climate processes

which influence ocean heat content vary more considerably over latitude than over longitude. Lon-

gitudinal, and to a lesser degree latitudinal, correlation lengths are noticeably larger around the

Equatorial regions, particularly in the Pacific. The process standard deviation field
√
ϕ displays

higher values around the major currents, in particular the Gulf Stream of the North Atlantic, the

Kuroshio Current off the coast of Japan, the South Atlantic current off of Argentina, and the

Arctic circumpolar current in the Southern Ocean. The nugget standard deviation also exhibits

higher values in the area of these currents as well as noticeably high values in the South Pacific.

The temporal effective correlation lengths are generally on the scale of several months. There is a

notable area of temporal correlation lengths of less than a month in the western equatorial Pacific,

and there are regions in the Northern Pacific and the Southern Pacific where temporal correlation

lengths are more than a year.

This spatio-temporal initial configuration can be compared to the spatial-only initial configuration

displayed in Baugh and McKinnon [2022]. The pattern of the process variance having higher values

around major currents is consistent between the spatial-only and spatio-temporal models. This

indicates that the variance in these regions persists when accounting for temporal correlations and
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(a) Effective longitudinal range γlon (b) Effective latitudinal range γlat

(c) Process standard deviation
√
ϕ (d) Nugget standard deviation σ

(e) Effective temporal range γtime

Figure 2: Initial parameter fields obtained from fitting Gaussian processes to estimated parameter
fields obtained from a moving-window approach.
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seasonal patterns in the larger dataset. While both models have higher longitudinal and latitudinal

correlation length scales near the equator, the pattern is less robust in the spatio-temporal case,

with the central equatorial Pacific having lower correlation scales than in the spatial-only initial

configuration. Longitudinal correlations in the equatorial regions are even less prominent in the

posterior distribution to be seen in Figure 3. This could perhaps be caused by climate phenomena

with seasonal features that are not present in the January-only spatial treatment, but are present

and modeled in the spatio-temporal context. An example would be ENSO, which causes spatially-

coherent anomalies in the equatorial Pacific but is known to peak in the Northern Hemisphere winter

[Glantz et al., 2001]. As such, the estimated correlation patterns in the spatial-only treatment may

not be present in other months. Furthermore, such seasonal phenomenon would be modeled more

precisely with the seasonally and spatially varying mean-field here, which could account for some

of the correlation in the anomalies and lead to smaller ranges. Another discrepancy between the

spatial-only and spatio-temporal initial conditions can be seen in the process and nugget variance

fields, which exhibit high values in the south-eastern and south-western Pacific regions in the

spatio-temporal configuration. These regions are unremarkable in the spatial-only configuration.

This discrepancy could be caused by the same dynamics as the differences in the correlation length

fields, as it is known that the variance and range parameters are closely related in Gaussian process

likelihoods [Stein, 1999]. In other words, it would not be surprising that a change in the properties

of the data when adding additional months would manifest in all of the correlation-length and

variance fields. Precise identification of the climate feature causing this discrepancy may be of

independent interest, and is left here as a suggestion for future research.

5 Selection of Vecchia Process Conditioning Set Size

Similar to Baugh and McKinnon [2022], a Vecchia process approximation to the full Gaussian

process [Guinness and Katzfuss, 2018, Katzfuss et al., 2020a,b, Katzfuss and Guinness, 2021] will

be used to render Bayesian inference tractable on the 1,111,023 observations in the dataset. To

achieve a sufficiently accurate Vecchia process, the parameter m, which controls the size of the

conditioning sets, needs to be re-selected within the new spatio-temporal context. In Baugh and

McKinnon [2022] a value ofm = 50 was justified by fitting Gaussian processes with the full Cholesky
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likelihood to each of eleven regions partitioning the domain and then comparing the resulting

integrated values to those obtained from fitting Vecchia processes with varying values of m to the

same regions. With the spatio-temporal dataset, however, the full Gaussian process likelihood is too

computationally intensive to fit on data restricted to the regions defined in Baugh and McKinnon

[2022]. Further restricting the regions would lead to areas that would be insufficiently large for

estimating the non-stationary parameter fields. Instead, to maintain the full correlation structure

of the global model, the study presented here will focus on evaluating the posterior distributions

for the mean and trend parameters conditioned on the values of the fully non-stationary correlation

structure. This has the downside of assuming a fixed correlation structure rather than re-estimating

the parameters, however, given the large amount of time required to fit the fully non-stationary

posterior distribution, re-estimating the parameter fields for different values of m would not be

practical.

µpost σµ;post βpost σβ;post
5 3.12×10−4 0.049 8.30×10−3 0.046

10 1.84×10−4 0.027 4.53×10−3 0.025
20 1.33×10−4 0.014 6.95×10−3 0.013
30 8.67×10−5 9.76×10−3 5.34×10−3 9.41×10−3

40 7.11×10−5 7.46×10−3 4.36×10−3 7.31×10−3

50 6.85×10−5 5.93×10−3 5.62×10−3 5.89×10−3

60 4.61×10−5 4.95×10−3 3.66×10−3 4.87×10−3

70 3.58×10−5 4.15×10−3 3.10×10−3 4.10×10−3

80 3.05×10−5 3.62×10−3 2.92×10−3 3.55×10−3

90 2.68×10−5 3.20×10−3 3.14×10−3 3.09×10−3

100 2.51×10−5 2.83×10−3 2.73×10−3 2.77×10−3

200 2.40×10−6 1.17×10−3 6.60×10−4 1.12×10−3

Reference: 500 0 0 0 0

Table 2: Fractional errors of posterior means and standard deviations for the mean and trend
fields evaluated using Vecchia processes with increasing values of m. Errors are calculated against
reference level of m = 500.

Define the posterior mean and standard deviation of the integrated mean-field conditioned on the

set of correlation parameter fields ρ as

[∫
xlat,xlon

µst(xlat, xlon, xorigin) dxlat dxlon

∣∣∣∣Hobs,ρ

]
≡ N(µpost, σµ;post)
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where xorigin denotes January 1, 2007. For the trend field, analogously define

[∫
xlat,xlon

β(xlat, xlon) dxlat dxlon

∣∣∣∣Hobs,ρ

]
≡ N(βpost, σβ;post)

In order to select m before beginning the MCMC sampling procedure, ρ is taken to be the initial

condition parameter fields obtained in Section 4.

The posterior distribution parameters defined above will be denoted with super-script (m) when

calculated using the corresponding Vecchia process. Values of µ
(m)
post, σ

(m)
µ;post, β

(m)
post and σ

(m)
β;post were

computed for m ∈ {5, 10, 20, . . . , 100, 200} and m = 500. Since it is not computationally possible

to evaluate the full Cholesky decomposition with over one million observations, m = 500 was the

highest value of m evaluated; with this value, it took over eight hours with 30 cores on a cluster

with 512GB of memory to evaluate the posterior distributions. For each value of m, fractional

errors for the mean and slope fields were calculated using m = 500 as the reference level, yielding

|µ(m)
post−µ

(500)
post |

|µ(500)
post |

,
|σ(m)

µ;post−σ
(500)
µ;post|

|σ(500)
µ;post|

,
|β(m)

post−β
(m)
post|

|β(500)
post |

, and
|σ(m)

β;post−σ
(500)
β;post|

|σ(500)
β;post|

.

The results of this study are displayed in Table 2. It can be seen that the errors for the posterior

standard deviation of both the mean and trend fields are higher than the errors for the posterior

means. This is unsurprising as the values of the mean and trend fields are fairly constrained by

the amount of data available, whereas the uncertainty values are more challenging to estimate

accurately. For all four of the evaluated quantities, errors generally descend as the values of m

increase. However, after about m = 50 the fractional errors are all less than 7.5×10−3, with higher

values of m seeing decreasing marginal improvements. As such, m = 50 is used for the MCMC

results presented in the following section.

6 Posterior Distribution Results

To obtain the posterior distribution of the correlation parameters using MCMC, the sampler was

run for increasing lengths of 1,000 iterations until convergence was achieved as indicated by the

Heidelburger-Welch test applied to posterior densities of the parameter fields [Heidelberger and

Welch, 1981]. This procedure required 3,000 iterations, of which the first 2,500 iterations were

removed as a burn-in period. These 3,000 iterations took 528 hours (around 22 days) running on
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(a) Effective longitudinal range γlon (degrees longitude).

(b) Effective latitudinal range γlat (degrees latitude).

(c) Effective temporal range γtime (days).

Figure 3: Samples corresponding to the first (left) and ninety-ninth (right) posterior quantiles for
the effective longitudinal, latitudinal, and temporal ranges.

30 cores of a compute server with 528GB of memory. This section will proceed to present the

results from the posterior distribution, including the covariance parameter fields, the spatially and

seasonally varying mean-field, the ocean heat content values by month, and the spatially-varying

trend field.

6.1 Posterior Parameter Fields

To visualize the posterior distribution, configurations corresponding to the first and ninety-ninth

quantiles of the average parameter values were identified for each parameter field. The resulting
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(a) Process standard deviation
√
ϕ (GJ/m2).

(b) Nugget standard deviation σ (GJ/m2).

Figure 4: Samples corresponding to the first (left) and ninety-ninth (right) posterior quantiles for
the process standard deviation and nugget standard deviation.

interpolated fields for longitudinal, latitudinal, and temporal ranges are displayed in Figure 3. For

longitudinal ranges, it can be seen that the behavior of the high-range region in the equatorial Pacific

has decreased in the center and moved both east and west in comparison to the initial configuration

of Figure 2a. Variability in the posterior distribution for the longitudinal range field can be seen in

this equatorial Pacific region, as well as in the equatorial Atlantic and in the Southern Ocean. For

latitudinal ranges, Figure 3b exhibits higher values in the equatorial Atlantic when compared to

the initial configuration, as well as noticeable variability. Variability in latitudinal ranges can also

be observed in the eastern equatorial Pacific and the Southern Ocean. For temporal ranges, values

in the posterior appear to be generally larger than those in the initial condition, with variability

particularly high in the Southern Ocean.

The posterior distributions of process variance and nugget variance are displayed in Figure 4. For

the process variance, Figure 4a shows general patterns similar to the initial configuration. Larger

posterior variability is particularly notable around the location of the highly variable Antarctic Cir-

cumpolar current south-west of Africa. Overall, the process variance and nugget variance displayed
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in Figure 4 appear to exhibit smaller levels of posterior variability than the other parameters. This

is indicative of the fact that the variance parameters are fairly constrained by the amount of the

data present, although larger posterior uncertainty is in general larger in the highly variable cur-

rent regions. It should be noted that a common feature between all of the posterior distributions

is the higher variability in the Southern ocean. This is not surprising when considering the spatial

distribution of floats in Figure 1, where despite the large increase in float coverage over time, the

data coverage rates in the Southern ocean remain low in later years.

6.2 Posterior Mean, Trend, and OHC Values

After obtaining the posterior distributions for the correlation parameter fields using MCMC, the

posterior distribution of the spatio-temporal mean and trend fields can be evaluated directly. Figure

5 shows the mean-field for the MAP configuration evaluated at September 15. To get a sense of the

spatial variation of seasonality, Figure 5(b) displays the difference between the September 15 mean-

field minus the mean-field evaluated at March 15. As the ocean absorbs heat slowly throughout

local summer, the warmest ocean heat content values would be expected to occur around the

month of September in the Northern Hemisphere. Conversely, March would be expected to see

the warmest ocean heat content values in the Southern Hemisphere. This intuition is confirmed in

Figure 5(b), where it can be seen that September is generally warmer than March in the Northern

Hemisphere and is generally colder than March in the Southern Hemisphere. Seasonal differences

are most pronounced around currents, and in particular the Kuroshio current east of Japan and

the North Atlantic current east of the United States.

Figure 6 displays the posterior distribution for globally-integrated ocean heat content evaluated

at each month of the time range with 95% credible intervals. The distinction between confidence

intervals and credible intervals are ignored here, as they are often difficult to distinguish in the full

spatio-temporal setting. It can be seen that the width of the credible intervals for the ocean heat

content values decrease over time as the number of floats increases. Also displayed is the posterior

mean of the globally-integrated mean-field. The seasonal structure of ocean heat content is clearly

visible in this figure, with the warmest values occurring in late March. This is due to the fact that

March sees the warmest ocean heat content values in the Southern Hemisphere, which contains a
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Figure 5: Mean-fields for September (a) and the difference between September and March (b)
showing spatially-varying seasonality.

18



6.2 Posterior Mean, Trend, and OHC Values 6 POSTERIOR DISTRIBUTION RESULTS

Figure 6: OHC by month with credible intervals. The 95% credible interval for the trend is
(12.59, 13.39)× 1021J/year.

larger percentage of the global ocean than the Northern Hemisphere.

It can be seen here that the massive increase in data produces a notably narrower credible interval

for the trend than in Baugh and McKinnon [2022]. In particular, here the 95% credible interval

for the globally integrated trend is (12.59,13.39) ZJ/year, whereas in the results of Baugh and

McKinnon [2022] the interval was (4.66,16.03) ZJ/year. This corresponds to reduction in the

posterior standard error by a factor of 15. This is larger than would be expected from the increase

in the amount of data alone, as if the 1/
√
n convergence rate of the variance of a standard normal

distribution is assumed, increasing the number of data points from 47,513 to 1,147,710 would

suggest a reduction in the standard error by a factor of 5. This indicates that adding the spatial

components to the model is adding additional confidence to the multi-year trend than would be

expected from the amount of data alone. This can be attributed to three sources. The first and

possibly the largest effect is that, with the addition of the temporal correlation structure, values at

locations that may not have any nearby observations in a particular month now can use information

from anomalies in nearby months. This will reduce the interpolation uncertainty over the single-

month version whenever the effective temporal range is greater than a month, which as seen in

Figure 3c is true for most of the ocean heat content domain. The second effect is that the addition

of floats has increased the spatial coverage of the observations as can be seen in Figure 1. This

increase in coverage will lead to a reduction of interpolation uncertainties in more recent years.

The third effect is the inclusion of seasonal variation in the mean-field, which will reduce the values

of the anomalies by modeling the albeit small amount of within-month seasonal variation.
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Figure 7: Posterior mean for the trend field β in units of (GJ/m2)/year.

The posterior mean of the spatially-varying trend field is displayed in Figure 7. Since the posterior

means are more than three standard deviations away from zero in 84% of the grid-cells, the posterior

probability of a positive trend visualization is omitted in lieu of the map of posterior standard

deviations. From Figure 8 it can be seen that the areas of the trend field with the highest uncertainty

generally correspond to the high-variance regions displayed in Figure 4.

When comparing these results to Baugh and McKinnon [2022], some areas such as the Atlantic

Ocean east of North America and south-east of South America have warming trends in both the

January-only fit and in the all-years fit. The clear warming and cooling trends in the equatorial

Pacific in the January-only fit are not as prominent in the all-years fit. This likely is due to the

fact that ENSO’s somewhat seasonal features has given it an outsized influence on the equatorial

Pacific region in the January-only results from Baugh and McKinnon [2022].

7 Conclusion

The results in this chapter has shown that extending the January-only model from Baugh and

McKinnon [2022] to all months and to additional years allows for ocean heat content to be estimated

with a much higher degree of accuracy. In particular, the incorporation of temporal structure in

the covariance structure of the anomalies and incorporating seasonality in the mean-field generates

results with higher confidence than would be expected just from the increase in the amount of
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Figure 8: Posterior standard deviations of the trend field β in units of (GJ/m2)/year.

data alone. Another notable change when extending the model to the spatio-temporal domain is

the change in the posterior distributions for the latitudinal and longitudinal ranges as well as in

the marginal variance and nugget variance parameters in the central Pacific. This suggests that

allowing the correlation parameters to vary seasonally could present a meaningful improvement

to the statistical modeled presented here. Since the estimation of the posterior distribution of

ocean heat content is fairly constrained by the amount of information present in the data, further

improvements in modeling the covariance structure of the ocean heat content field will likely have

only a small effect on the strength of the ultimate conclusions. It should also be noted that the trend

found here is broadly consistent with other entries in the literature [Cheng et al., 2019, Resplandy

et al., 2019], although a more in-depth analysis of how the mean estimates and uncertainty levels

compare between different approaches, and how these estimations influence estimates of Equilibrium

climate sensitivity, would be an interesting extension in future work.
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